Blind Joint Maximum Likelihood Channel Estimation and Data Detection for SIMO Systems

نویسندگان

  • Sheng Chen
  • Xiao-Chen Yang
  • Lei Chen
  • Lajos Hanzo
چکیده

A blind adaptive scheme is proposed for joint maximum likelihood (ML) channel estimation and data detection of singleinput multiple-output (SIMO) systems. The joint ML optimisation over channel and data is decomposed into an iterative optimisation loop. An efficient global optimisation algorithm called the repeated weighted boosting search is employed at the upper level to optimally identify the unknown SIMO channel model, and the Viterbi algorithm is used at the lower level to produce the maximum likelihood sequence estimation of the unknown data sequence. A simulation example is used to demonstrate the effectiveness of this joint ML optimisation scheme for blind adaptive SIMO systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Joint Maximum Likelihood Channel Estimation and Data Detection for Single-Input Multiple-Output Systems

A blind adaptive scheme is proposed for joint maximum likelihood (ML) channel estimation and data detection of single-input multiple-output (SIMO) systems. The joint ML optimization over channel and data is decomposed into an iterative optimization loop. An efficient global optimization algorithm called the repeated weighted boosting search is employed at the upper level to identify optimally t...

متن کامل

Optimal Non-coherent Data Detection for Massive SIMO Wireless Systems with General Constellations: A Polynomial Complexity Solution

Massive MIMO systems can greatly increase spectral and energy efficiency over traditional MIMO systems by exploiting large antenna arrays. However, increasing the number of antennas at the base station (BS) makes the uplink noncoherent data detection very challenging in massive MIMO systems. In this paper we consider the joint maximum likelihood (ML) channel estimation and data detection proble...

متن کامل

Maximum likelihood joint channel and data estimation using genetic algorithms

A batch blind equalization scheme is developed based on maximum likelihood joint channel and data estimation. In this scheme, the joint maximum likelihood optimization is decomposed into a twolevel optimization loop. A micro genetic algorithm is employed at the upper level to identify the unknown channel model, and the Viterbi algorithm is used at the lower level to provide the maximum likeliho...

متن کامل

An Improved Semi-blind Joint Data Detection and Channel Estimation Algorithm for MIMO-OFDM System

In this paper, a new Semi-blind joint Grover’s Quantum Search (GS) based data detection and Space-Alternating Generalized Expectation-maximization (SAGE) channel estimation algorithm for Multiple-Input Multiple-Output (MIMO)-Orthogonal frequency division multiplexing (OFDM) system is proposed. According to the training symbols inserted in the head of sub-frame, we get the initial estimation of ...

متن کامل

Modified Whitening Rotation based Joint Semi-blind Channel and Data Estimation Scheme for Rayleigh Flat Fading MIMO channels

In this paper, we propose a novel joint semi-blind channel and data estimation technique based on Whitening Rotation (WR) method for Rayleigh flat fading Multiple Input Multiple output (MIMO) channel using different receiver antennas combinations. Here we divide newly proposed technique in three steps. In the first step, we use conventional Whitening Rotation based semi-blind channel estimation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006